Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene.
نویسندگان
چکیده
The aryl hydrocarbon receptor (AhR) is a period-aryl hydrocarbon receptor nuclear transporter-simple minded domain transcription factor that shares structural similarity with circadian clock genes and readily interacts with components of the molecular clock. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters behavioral circadian rhythms and represses the Period1 (Per1) gene in murine hematopoietic stem and progenitor cells. Per1 expression is driven by circadian locomotor activity cycles kaput-brain muscle ARNT-like (CLOCK-BMAL1)-dependent activation of Eboxes in the Per1 promoter. We hypothesized that the effects of AhR activation on the circadian clock are mediated by disruption of CLOCK-BMAL1 function and subsequent Per1 gene suppression. Effects of AhR activation on rhythmic Per1 transcripts were examined in livers of mice after treatment with the AhR agonist, TCDD; the molecular mechanisms of Per1 repression by AhR were determined in hepatoma cells using TCDD and beta-napthoflavone as AhR activators. This study reports, for the first time, that AhR activation by TCDD alters the Per1 rhythm in the mouse liver and that Per1 gene suppression depends upon the presence of AhR. Furthermore, AhR interaction with BMAL1 attenuates CLOCK-BMAL1 activity and decreases CLOCK binding at Ebox1 and Ebox3 in the Per1 promoter. Taken together, these data suggest that AhR activation represses Per1 through disrupting CLOCK-BMAL1 activity, producing dysregulation of rhythmic Per1 gene expression. These data define alteration of the Per1 rhythm as novel signaling events downstream of AhR activation. Downregulation of Per1 could contribute to metabolic disease, cancer, and other detrimental effects resulting from exposure to certain environmental pollutants.
منابع مشابه
Beyond toxicity: aryl hydrocarbon receptor-mediated functions in the immune system
The aryl hydrocarbon receptor is a ligand-activated transcriptional regulator that binds dioxin and other exogenous contaminants and is responsible for their toxic effects, including immunosuppression. New evidence suggests, however, that the aryl hydrocarbon receptor has a physiological role in the immune system, and the immunosuppressive effects of dioxin may reflect a more subtle disruption ...
متن کاملAryl Hydrocarbon Receptor Deficiency Enhances Insulin Sensitivity and Reduces PPAR-α Pathway Activity in Mice
BACKGROUND Numerous man-made pollutants activate the aryl hydrocarbon receptor (AhR) and are risk factors for type 2 diabetes. AhR signaling also affects molecular clock genes to influence glucose metabolism. OBJECTIVE We investigated mechanisms by which AhR activation affects glucose metabolism. METHODS Glucose tolerance, insulin resistance, and expression of peroxisome proliferator-activa...
متن کاملSmooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.
As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of bl...
متن کاملPositive Autoregulation Delays the Expression Phase of Mammalian Clock Gene Per2
In mammals, cellular circadian rhythms are generated by a transcriptional-translational autoregulatory network that consists of clock genes that encode transcriptional regulators. Of these clock genes, Period1 (Per1) and Period2 (Per2) are essential for sustainable circadian rhythmicity and photic entrainment. Intriguingly, Per1 and Per2 mRNAs exhibit circadian oscillations with a 4-hour phase ...
متن کاملBimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity.
Circadian rhythmicity in mammals is under the control of a molecular pacemaker constituted of clock gene products organized in transcriptional autoregulatory loops. Phase resetting of the clock in response to light involves dynamic changes in the expression of several clock genes. The molecular pathways used by light to influence pacemaker-driven oscillation of clock genes remain poorly underst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 115 1 شماره
صفحات -
تاریخ انتشار 2010